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Ambient Sensor Fusion for Virtual Reality Systems

by Jake Alexander Fountain

Modern Virtual Reality (VR) systems rely on precise measurements of the real world

to realistically present a virtual environment. Range, capability and accuracy are key

tracking properties which determine the realism and applicability of a VR system.

Integration of two or more sensor systems can enhance these properties compared to

each individual component system. To support a rich ecosystem of diverse tracking

devices for all levels of user competency, algorithms for ambient sensor fusion are re-

quired - algorithms which do not require user intervention or knowledge. This thesis

investigates each of the following three steps required for ambient sensor fusion.

First, Correlation involves identification of sensor dependencies and temporal rela-

tionships. Second, Calibration aligns sensor measurement domains. Finally, Fusion

combines sensor data to extract an underlying statistical model.

To address the correlation step, an algorithm for identifying rigid links between po-

sition and rotation sensors from di↵erent systems was developed and tested with

several real world systems. Additionally, a novel model-less approach to determ-

ining latency between two sensor systems has shown promising results for use in

comparison of arbitrary dependent signals.
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To address the second sensor fusion step, an ambient calibration technique has been

developed which determines the relationship between two systems solely from self-

directed user movement. The algorithm was applied to the Microsoft Kinect v2 and

popular VR systems to enable body tracking in VR with commodity devices and

minimal user setup.

To address the final sensor fusion step, a modular multi-modal skeleton fusion al-

gorithm was developed. The algorithm employs a novel constrained articulated Kal-

man filter to combine skeletal tracking results with high modularity in real time. To

test the fusion system, the optical Leap Motion hand tracking system was fused with

the inertial Perception Neuron hand tracking system. A user study was performed

(n=18) and results suggested that the proposed system succeeds in generalising the

component tracking systems to perform well in a wider variety of scenarios.

Finally, the research software has been made available in an open source C++ plugin

called ‘Spooky’. Spooky currently supports Unreal Engine 4. Future work will

be focused on improving the reliability and usability of the Spooky framework,

while extending the techniques developed for each of the fusion steps to broader

applications.
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• The problem of ambient sensor fusion is identified as a valuable re-

search direction aimed at allowing researchers, professionals and hobbyists

to create cheaper, high quality, modular sensor systems for VR (Chapter 1)
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• The contributions of this thesis include four main theory areas:

1. Ambient sensor identification (Chapter 3)

2. Model-less calibration of latency between dependent sensor signals
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4. Modular sensor fusion for articulated bodies (Chapter 6)

• Additionally, two central practical contributions are discussed:

1. An open-source plugin for Unreal Engine 4 / C++ implementing key

sensor fusion algorithms (Chapter 7)

2. A user study assessing the utility of the developed fusion algorithms

(Chapter 8)


